Regular Sturm-Liouville problems

A Sturm-Liouville problem consists of

ODE:
$$-(p(x)y'(x))' + q(x)y(x) = \lambda y(x)$$
 for $a < x < b$
BC1: $\alpha_1 y(a) + \alpha_2 y'(a) = 0$
BC2: $\beta_1 y(b) + \beta_2 y'(b) = 0$

A Sturm-Liouville problem is regular if

- p p', and q are continuous for $a \le x \le b$
- p(x) > 0 for $a \le x \le b$
- $(\alpha_1, \alpha_2) \neq (0, 0)$ and $(\beta_1, \beta_2) \neq (0, 0)$

Regular Sturm-Liouville problems

For a regular Sturm-Liouville problem:

- 1 There are countably many eigenvalues λ_n , n = 1, 2, 3, ...
- 2 Each eigenvalue is real.
- 3 There is a smallest eigenvalue and no largest eigenvalue so the eigenvalues can be ordered $\lambda_1 < \lambda_2 < \lambda_3 < \cdots$ with $\lim_{n \to \infty} \lambda_n = \infty.$
- 4 For each eigenvalue, there is a one-dimensional eigenspace that is spanned by a single eigenfunction y_n .
- 5 The eigenfunction y_n has n-1 zeros for a < x < b.
- 6 The set of eigenfunctions $\{y_n | n = 1, 2, 3, ...\}$ is a maximal orthogonal set in $L^2[a, b]$ with respect to the inner product $\langle f, g \rangle = \int_a^b f(x)g(x) dx$ and hence a basis.